Goal-oriented Atomistic-Continuum Adaptivity for the Quasicontinuum Approximation
نویسندگان
چکیده
منابع مشابه
Goal-oriented Atomistic-continuum Adaptivity for the Quasicontinuum Approximation
Abstract. We give a goal-oriented a posteriori error estimator for the atomistic-continuum modeling error in the quasicontinuum method, and we use this estimator to design an adaptive algorithm to compute a quantity of interest to a given tolerance by using a nearly minimal number of atomistic degrees of freedom. We present computational results that demonstrate the effectiveness of our algorit...
متن کاملAtomistic-to-continuum coupling based on goal-oriented adaptivity and quasi-continuum approximation
It has long been understood that some of the key characteristics of materials, like grain boundaries, dislocation cores, and crack tips cannot be modeled realistically within the framework of continuum mechanics. It is believed that defects and surface effects play important roles at small scales, where the continuum assumptions are violated. Therefore, further information on a material at its ...
متن کاملError Estimation and Atomistic-Continuum Adaptivity for the Quasicontinuum Approximation of a Frenkel-Kontorova Model
We propose and analyze a goal-oriented a posteriori error estimator for the atomisticcontinuum modeling error in the quasicontinuum method. Based on this error estimator, we develop an algorithm which adaptively determines the atomistic and continuum regions to compute a quantity of interest to within a given tolerance. We apply the algorithm to the computation of the structure of a crystallogr...
متن کاملStress-based Atomistic/continuum Coupling: a New Variant of the Quasicontinuum Approximation
The force-based quasicontinuum (QCF) approximation is the principle that lies behind the most commonly used atomistic/continuum hybrid models for crystalline solids. Recent analyses have shown some potential pitfalls of the QCF method, particularly the lack of positive definiteness of the linearized QCF operator and the lack of uniform stability as the number of atoms tends to infinity. We deri...
متن کاملto appear in Multiscale Modeling and Simulation ERROR ESTIMATION AND ATOMISTIC-CONTINUUM ADAPTIVITY FOR THE QUASICONTINUUM APPROXIMATION OF A FRENKEL-KONTOROVA MODEL
We propose and analyze a goal-oriented a posteriori error estimator for the atomisticcontinuum modeling error in the quasicontinuum method. Based on this error estimator, we develop an algorithm which adaptively determines the atomistic and continuum regions to compute a quantity of interest to within a given tolerance. We apply the algorithm to the computation of the structure of a crystallogr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal for Multiscale Computational Engineering
سال: 2007
ISSN: 1543-1649
DOI: 10.1615/intjmultcompeng.v5.i5.40